
 TV SYNCHRONISM GENERATION WITH PIC MICROCONTROLLER

C o p y r i g h t © 2 0 1 6 – M a r c e l o M a g g i

Page 1

TV Synchronism Generation with PIC

Microcontroller

With the widespread conversion of the TV transmission and coding standards, from the early analog

(NTSC, PAL, SECAM) systems to the modern digital formats (ATSC, DVB, ISDB, etc.), added to the price

reduction of larger screen devices, old analog TV sets have become obsolete, unless they are used

with converter boxes or connected to analog content generators, such as video game consoles with

analog output. Here I will present a method to generate NTSC TV synchronism signals, so the old

analog TV sets can be used again to show user-generated content.

Analog television operation is regulated by norms and standards, which assure compatibility between

the signal generation, transmission, reception and finally reproduction on a TV screen (see “Video

Pattern Generator” on the Projects section at www.magusporta.com for a complete description of the

theory behind the TV transmission and the practical solutions that ended up in the main analog

standards being created).

For an image to appear complete and perfectly stable on a TV screen, it must comply with very strict

timing requirements, which vary among the various standards. These timing requirements are usually

known as “synchronism pulses”, and are divided into two main components: Vertical and Horizontal.

The vertical synchronism indicates when a new image field starts; the horizontal, when each one of the

lines composing the field starts. Both synchronisms can be sent separately or joined together, known as

“composite synchronism”, which is the usual way in which a TV set receives this signal.

The composite synchronism can be generated with any clocked circuit that can count clock pulses;

therefore it seems a task fit for a microcontroller. Let’s see how to generate a complete NTSC-M

composite synchronism using a PIC microcontroller (PIC 12F1571), programmed in C language using the

CCS C compiler.

NTSC-M composite synchronism

The NTSC-M standard image is composed of 525 horizontal lines, shown as two consecutive fields of

262.5 lines each. The start of each field is marked by the vertical synchronism, preceded by the pre-

equalizing pulses and followed by the post-equalizing ones.

The duration of the pre and post-equalizing pulses, as well as the vertical synchronism, is equal to 3

horizontal lines each block; therefore, 9 horizontal lines are always used to generate these pulses. The

spacing between each pre and post-equalizing pulse is half of a horizontal line, so 6 pulses are generated

in each group. The vertical synchronism includes the serrated pulses, also spaced half horizontal line

(figure 1).

http://www.magusporta.com/

 TV SYNCHRONISM GENERATION WITH PIC MICROCONTROLLER

C o p y r i g h t © 2 0 1 6 – M a r c e l o M a g g i

Page 2

FIGURE 1 – Start of fields one and two; the line numbers are written below each line

As mentioned before, each field has 262.5 lines, so the last line of the first field is just one half of a

horizontal line, as well as the first line of the second field. This fact guarantees that the lines appear on

an interlaced fashion on the screen, creating the so called “interlaced scanning” (figure 2).

FIGURE 2 – Interlaced and non-interlaced scanning

The other method to scan the image is the “non-interlaced scanning”, also called “progressive

scanning”. Normal TV transmission uses the first method, while the progressive scanning is used when

showing static patterns, such as text or graphics, since the interlaced method will produce vertical jitter.

After the post-equalization pulses, the standard horizontal lines are generated. It is possible to insert

video in each of these horizontal lines; however the standard indicates that there should be a “vertical

blanking period”, which goes up to line number 20. During this period there is no video inserted, just

pure synchronism. This is fine, since these lines will fall outside the visible screen in any well-adjusted TV

set.

After line 20, the video information can be added to the synchronism pulses. There are however some

timing considerations, as shown in figure 3.

 TV SYNCHRONISM GENERATION WITH PIC MICROCONTROLLER

C o p y r i g h t © 2 0 1 6 – M a r c e l o M a g g i

Page 3

FIGURE 3 – Horizontal line, showing the detailed timing of the horizontal synchronism and surrounding elements

The horizontal pulse duration is 4.7 µs (shown as “Sync Tip”), preceded by the “Front Porch” (1.5 µs) and

followed by the “Back Porch” (4.7 µs). This back porch will contain the color burst in case of a color

transmission, so it is shown as “Breezeway”, “Color Burst” and “Back Porch”; for a black and white

image, this breakdown is not relevant. After this, the video information will be sent, and it may last until

the next front porch arrives. Since the horizontal frequency is 15,734 Hz, the total line duration is close

to 63.55 µs; subtracting the time used by the synchronism pulse and both porches, the useful video

window is around 52.65 µs, which fits in the visible screen.

Generating the composite synchronism in C

As previously seen, the synchronism generation is a matter of timing; count the appropriate number of

clock pulses and set a microcontroller pin up or down, as required. Repeat this as many times as there

are lines in a frame, and you have a complete composite synchronism.

While in assembler we may have a complete control of the timing, since we are counting machine

instructions, in C the scenario is completely different. The number of machine instructions generated by

a given C command will depend largely on the compiler used and the optimization level it may reach.

However, there is a very precise way to generate a timing reference: using the PIC timer interruption.

 TV SYNCHRONISM GENERATION WITH PIC MICROCONTROLLER

C o p y r i g h t © 2 0 1 6 – M a r c e l o M a g g i

Page 4

Before start analyzing the program, let’s take a look at the hardware, shown in figure 4.

FIGURE 4 – Synchronism generator schematic

The setup is extremely simple: a clock generator and a PIC. You may notice, by reading the datasheet,

that this PIC can generate the clock internally, so there is no need for the external oscillator. While this is

true, the internal oscillator is not stable enough to produce accurate timings, and there will be a

noticeable wobbling in the generated image. Therefore, an external crystal oscillator is required.

The system clock frequency is set at 32 MHz; this frequency is perfect for our purposes. Setting the

Timer0 (8 bit timer) to be updated every 2 instruction clock pulses (32 MHz / 4 = 8 MHz), it will overflow

exactly at 64 µs [(1 / 8 MHz) x 2 x 256]. Therefore, the Timer0 interruption will be triggered every 64 µs.

This is the program configuration:

While 64 µs is quite close to the horizontal period, we can increase the precision to achieve 63.5 µs; it

only requires loading the Timer0 with an offset value, so it reaches the overflow value in less than 64 µs.

This is the first thing to do when the interruption is called:

The Timer0 is loaded with 13. If we calculate the new interruption timing, the equation is as follows:

(256-13) x 0.25 µs = 60.75 µs. This is much less than the required 63.5 µs; however, when we put

together the time required for the program to service the interruption, save context variables and

execute this initial instruction, the result is 63.5 µs. This is one of the drawbacks of programming in C as

mentioned before: you do not know what the compiler is actually doing. So this value is adjusted by

carefully observing the generated signal in an oscilloscope. This is not even constant from one PIC family

to another; if using the PIC16F1825, this value should be 15 instead of 13.

 TV SYNCHRONISM GENERATION WITH PIC MICROCONTROLLER

C o p y r i g h t © 2 0 1 6 – M a r c e l o M a g g i

Page 5

In any case, we have just set the most important time reference: the horizontal period. Every 63.5 µs the

interruption will be called and the horizontal synchronism pulse will be initiated [output_low(sync);].

Earlier in the program I defined the Pin A0 (RA0 in the schematic diagram) as the synchronism output, so

I can now refer to it simply as “sync”.

It is standard practice not to remain inside an interruption routine for a long time, so the program can

continue with the other tasks. In our case, the main task assigned to the PIC is to generate the

synchronisms, so we will remain inside the interruption as much as needed to guarantee a controlled

and precise timing.

Now it is time to generate the different pulses, starting with the pre-equalizing block. A variable called

“image_block” will control in which block we are, while another called “line_count” will count the lines

generated inside each block.

Each pulse lasts for 2.3 µs, and are spaced half a horizontal line. Delaying 11 instruction cycles before

moving up the sync pin again produces the 2.3 µs pulse, and the spacing is achieved by delaying 29 µs

and 2 cycles. Another pulse is generated; now 18 cycles are required to achieve the 2.3 µs since there

are no other instructions in the middle. After that, leave the interruption routine and return when it is

time for a new horizontal period start.

The process continues until line_count reaches 3; at this point (end of pre-equalizing block) the

line_count is reset and the image_block is increased by 1, indicating the start of the next block.

 TV SYNCHRONISM GENERATION WITH PIC MICROCONTROLLER

C o p y r i g h t © 2 0 1 6 – M a r c e l o M a g g i

Page 6

The vertical synchronism block follows the same logic; the main difference is that now the sync pin stays

low during a longer period, and only returns to the high state to generate the serrated pulses. After 3

lines, line_count is reset and image_block is loaded with 2.

Now it is time to generate the post-equalizing pulses; same logic as before, with one fundamental

change: the field detection to implement the interlaced scanning.

The first 3 loops are almost identical to the generation of the pre-equalizing pulses; only the duration of

the first pulse in each loop has been reduced to 5 cycles (instead of 11), to compensate for the delay to

reach this block (in a “switch” statement, each successive “case” represents a 3 cycle delay). With this

precaution, the actual pulse maintains the 2.3 µs duration.

 TV SYNCHRONISM GENERATION WITH PIC MICROCONTROLLER

C o p y r i g h t © 2 0 1 6 – M a r c e l o M a g g i

Page 7

When line_count reaches 3, then the variable is reset, the image_block loaded with 3 and a new variable

is evaluated: “field”. If field is 1, then the next horizontal pulse will arrive at half the horizontal period,

when the interruption is triggered (line 9 in figure 1). So, there is nothing to do here. However, if we are

in the second field, in order to maintain the half-line shift on the interlaced scanning, the next horizontal

pulse needs to arrive one complete horizontal period after the last post-equalizing pulse (line 272 in

figure 1). Therefore, the Timer0 is loaded with a new value in order to achieve this longer period, and

line_count loaded with 1 instead of 0, to maintain the total count (field 1 + field 2) equal to 525 lines.

The last block (case 3) generates all the rest of the horizontal lines; this is the “blank canvas” where the

video content will be added to be shown on the TV screen. Using a 20-cycle delay the 4.7 µs horizontal

pulse is generated, and the program leaves the interruption routine. This is until line 254 is reached

(lines 263 or 525 in figure 1). At this point, line_count and image_block are both reset, and a new

variable is evaluated: “interlace”. If interlace is 1 (meaning “interlaced scanning”), then “field” is

evaluated; if in field 1 (line 263 in figure 1), the next pre-equalizing pulse will arrive only one half

horizontal period later, so Timer0 is loaded accordingly (171). If in field 2 (line 525 in figure 1), Timer0

remains untouched (one complete horizontal period will be generated). In both cases, the variable

“field” is toggled to keep the interlace process running.

If interlace is 0, however, field is always loaded with 1. In this case, the field 2 is never generated, and

field 1 repeats itself every time. This will create the “progressive” or “non-interlaced scanning”.

At this point, the full program has been described. When powered, the “sync” pin (RA0) will output a

perfectly timed composite synchronism, to be used in any TV with the NTSC-M system. Here is the full

program, written using CCS C:

 TV SYNCHRONISM GENERATION WITH PIC MICROCONTROLLER

C o p y r i g h t © 2 0 1 6 – M a r c e l o M a g g i

Page 8

 TV SYNCHRONISM GENERATION WITH PIC MICROCONTROLLER

C o p y r i g h t © 2 0 1 6 – M a r c e l o M a g g i

Page 9

The configuration file (sync_gen_12F1571.h) includes the external oscillator definition:

Figure 5 shows an actual capture of the signal being generated. The trigger is locked at line 1, so the pre

and post-equalizing pulses can be seen, as well as the vertical synchronism between them, and the last

and first horizontal lines on both extremes of the oscilloscope screen. This is the end of field 2 (line 525)

and the start of field 1 (line 1). The first horizontal synchronism of field 1 (on the right) arrives half line

after the last post-equalization pulse.

FIGURE 5 – Signal locked at line 1, showing the transition from field 2 to field 1

Figure 6 shows the end of field 1 and the start of field 2. The trigger is locked at line 263; this is just a

half line, followed by a pre-equalizing pulse. In order to maintain the total line count equal to 525, the

first horizontal synchronism arrives at one full line after the last post-equalization pulse, as can be seen

on the right side of the image. This is typical of an interlaced scanning, as previously explained.

 TV SYNCHRONISM GENERATION WITH PIC MICROCONTROLLER

C o p y r i g h t © 2 0 1 6 – M a r c e l o M a g g i

Page 10

FIGURE 6 – Signal locked at line 263, showing the transition from field 1 to field 2

While the timing is perfect, this signal is not suitable yet to be connected to a TV receiver through the

video input. You may notice that the amplitude is 5.0 V, and the video input standard requires 1.0 Vp-p

(including the video content, not shown here), so further amplitude shaping will be required.

The main purpose of this generator is to feed another circuit (e.g. another microcontroller) with the

proper synchronisms, so this second circuit does not have to worry about timing, just generate the

proper video contents and insert them within the video window (52.6 µs, as previously seen). This signal

can also be used as the reference to scan a video memory, so its contents are sent sequentially to the

TV, to form a complete image. This is the principle behind the “TV Character Generator” presented on

the Shop section at www.magusporta.com.

Practical examples

While this program’s primary use is to just generate composite synchronism, it can be used as a

standalone TV generator, if proper care is taken not to interfere with the timing. Let’s start by adding

some components to the circuit schematic, as shown in figure 7.

http://www.magusporta.com/

 TV SYNCHRONISM GENERATION WITH PIC MICROCONTROLLER

C o p y r i g h t © 2 0 1 6 – M a r c e l o M a g g i

Page 11

FIGURE 7 – Modified circuit schematic

This new circuit has a few added improvements:

 Besides synchronism (RA0), it will generate a video component in RA1.

 Four resistors (R1 through R4) add the synchronism and video signals, and adjust the amplitude

to the TV video input requirements.

 A variable resistor (P1) connected to an analog input (RA2) will let us modify the video

component.

 The switch (S1) connected to RA3 will let us select the scanning method.

In order for these changes to work, the program requires some additions. First of all, we will add a pin

definition and a new variable:

Then, the main program needs to be modified:

 TV SYNCHRONISM GENERATION WITH PIC MICROCONTROLLER

C o p y r i g h t © 2 0 1 6 – M a r c e l o M a g g i

Page 12

Basically, the ADC configuration is done for RA2 (sAN2), the proper direction of the Port A pins is set and

all the outputs cleared. Within the main loop, the new variable “position” will receive the value of the

ADC divided by 18 (maximum would be 1024 / 18 = 56), and “interlace” will be equal to the state of RA3

(PIN_A3). Therefore, the switch S1 will control the scanning method directly, ON = interlaced, OFF =

progressive.

Finally, the horizontal lines block (case 3) will include the video generation:

The highlighted section generates the video signal: from line_count = 41 to line_count = 229, a vertical

line will appear on the TV screen. The horizontal position of this line will be controlled with the variable

resistor (P1), moving 1 µs at a time. The offset (3 cycles + 3 µs) prevents the line to step over the back

porch.

In brief, to show anything on the TV screen, the vertical position is obtained by selecting the appropriate

horizontal lines, while the horizontal position is determined by the time delay from the synchronism

pulse.

If we would like to draw a wider vertical line, we only need to add some delay between the

“output_high(video);” and the “output_low(video);” instructions. An extreme case would be to put the

position in 0 and increase the line width to cover the whole video window: the result would be a white

screen, at least within the horizontal lines selected to insert video.

Figure 8 shows the actual TV image with the line positioned around the center of the screen; figure 9

shows the oscilloscope trace triggered at scan line 50 (line_count = 41).

 TV SYNCHRONISM GENERATION WITH PIC MICROCONTROLLER

C o p y r i g h t © 2 0 1 6 – M a r c e l o M a g g i

Page 13

FIGURE 8 – Vertical line at center of TV screen

FIGURE 9 – The uppermost dot of the vertical line as seen on the oscilloscope

 TV SYNCHRONISM GENERATION WITH PIC MICROCONTROLLER

C o p y r i g h t © 2 0 1 6 – M a r c e l o M a g g i

Page 14

Turning P1 clockwise, the line can be moved to the right, as shown in figures 10 and 11.

FIGURE 10 – Vertical line moved to the right

FIGURE 11 – The line position on the oscilloscope

 TV SYNCHRONISM GENERATION WITH PIC MICROCONTROLLER

C o p y r i g h t © 2 0 1 6 – M a r c e l o M a g g i

Page 15

How far to the right can we go? Besides the standard definition, which indicates that there must be a

separation of 1.5 µs from the next horizontal pulse (Front Porch), there is a practical limitation related to

the way we are generating these pulses. Since we are inside an interruption service routine, with the

interruption disabled, we need to make sure that the program leaves the routine before the next

interruption comes. This is not an instantaneous task, so a few microseconds must be considered to be

on the safe side. As a matter of fact, the line in figures 10 and 11 is located at the rightmost position

that guarantees a correct timing. This position is about 5.5 µs from the next horizontal pulse;

considering that the Front Porch takes 1.5 µs, then we are effectively losing 4.0 µs of the video window.

In practical terms this is not an issue; a good part of these 4.0 µs is effectively not visible in most TV sets,

and we must always guarantee a safe zone to show text and graphics. Therefore, there is no practical

reason to even try to show anything in this zone.

In any case, what happens if we try to move further to the right? Figure 12 shows the answer.

FIGURE 12 – Distorted timing due to delayed interrupt servicing

Since the interruption cannot be serviced at the precise time, the horizontal line gets longer, distorting

the top of the vertical line. With successive horizontal lines the TV circuits eventually lock into the new

timing, but the distortion reappears at the end of the line, not visible here since the screen is black and

there is no other pattern.

Obviously this limitation will not happen if this PIC is just dedicated to generate the synchronisms and

there is another circuit dedicated to generate the video; however it is good to know how it works.

How far to the left can we go? There is no limitation here in terms of the program, we just need to make

sure that the Back Porch is not overwritten with video, and that we are within the safe text and graphics

zone. Figures 13 and 14 show the line on the left edge of the screen: almost entering the invisible zone.

 TV SYNCHRONISM GENERATION WITH PIC MICROCONTROLLER

C o p y r i g h t © 2 0 1 6 – M a r c e l o M a g g i

Page 16

FIGURE 13 – Vertical line at the leftmost visible position

FIGURE 14 – The same line as seen on the oscilloscope

 TV SYNCHRONISM GENERATION WITH PIC MICROCONTROLLER

C o p y r i g h t © 2 0 1 6 – M a r c e l o M a g g i

Page 17

This experiment lets us draw some interesting conclusions about the synchronism generation and the

visible screen area.

In figure 3 we learned that the video content may start right after the Back Porch, about 4.7 µs from the

end of the horizontal synchronism pulse. Looking at figure 14, it is evident that the image starts to be

visible on screen around 7.5 µs after the pulse. This will vary depending on the actual TV adjustments,

and some units may show a bit more, others a bit less. So it is very important to consider the safe zone I

mentioned before when planning to show text and graphics. For standard TV transmission, of moving

images, this fact may not be very relevant, since the action is mostly centered on the screen, with not

much important content on the sides.

To finish, let’s draw a rectangle on the screen, to show graphically a reasonable safe zone.

Using the same principles previously shown, we draw a horizontal line, then two vertical lines, and

finally a new horizontal line: this is a rectangle. Figure 15 shows this new image.

 TV SYNCHRONISM GENERATION WITH PIC MICROCONTROLLER

C o p y r i g h t © 2 0 1 6 – M a r c e l o M a g g i

Page 18

FIGURE 15 – Rectangle on screen, showing the limits of a reasonable safe zone to insert text and graphics

The top and bottom lines can be seen like figure 16 on the oscilloscope; they are located at

scan lines 49 and 239 on field 1, and the corresponding lines on field 2 (if interlaced).

FIGURE 16 – Top and bottom lines of the rectangle

 TV SYNCHRONISM GENERATION WITH PIC MICROCONTROLLER

C o p y r i g h t © 2 0 1 6 – M a r c e l o M a g g i

Page 19

The vertical lines show a familiar pattern, but now with 2 lines instead of 1, as seen on figure 17.

FIGURE 17 – Side vertical lines of the rectangle

In conclusion, a reasonable safe zone for displaying text, charts and graphics, should be around these

numbers:

 Upper limit: scanning lines 44 to 49 on field 1, and the equivalent on field 2 (lines 306 to 311).

 Lower limit: scanning lines 239 to 244 on field 1, and the equivalent on field 2 (lines 501 to 506).

 Left limit: 9 to 10 µs from the end of the horizontal synchronism pulse.

 Right limit: 6 to 7 µs from the beginning of the next horizontal synchronism pulse.

With these limits in mind, the maximum usable screen size would be 200 horizontal lines in the vertical

dimension, and around 44 µs horizontally, which gives a reasonable area to show information. Just for

reference, the “TV Character Generator” mentioned before uses a grid of 320 pixels horizontally, by 192

vertically. Since each pixel lasts 1 instruction clock (0.125 µs), the horizontal time is 40 µs. In the vertical

dimension, each pixel is a horizontal line, so there are 192 lines used. The resulting screen is well within

the defined safe zone.

One last comment regarding the use of interlaced or progressive video; as mentioned earlier, the

progressive scanning is preferred when showing text and graphics, since the interlaced method

produces vertical jitter. This happens because the equivalent lines in field 1 and 2 appear in slightly

different positions when composing a complete frame and the eye perceives this movement when

showing static images. The progressive method does not have this problem, since there is only one field

that repeats over itself continuously; the drawback is the reduction in vertical resolution to one half of

the interlaced scanning. This generator offers both options, for added flexibility.

